Binary Space Partitioning

G
[—

18
T

tcd.ie>

Anton Gerdelan <gerdela@sc

img src: http://doom.wikia.com/

mailto:gerdela@scss.tcd.ie

Tree Construction Algorithm

e List of all walls in map A B
+ decide onafrontsideforeach .../ N Y/ should
C ,orob'ab/y
« Choose a root wall and make it a node Sl/?,i/;‘OD
« Sort all other walls into D1, D2
* In front list
- Behind list C
 Recurse on both lists Infront / \ behind
* front list's root -> left child D A \

e pbehind list's root -> right child B

Iree lraversal Algorithm

 |If we want to draw walls in background-to-foreground order (the painter's algorithm)
* We know the camera's (x,y) position
» Traverse tree, starting at root
* if current node is a leaf - draw current node and return
 if camera is in-front current node
« traverse tree, starting at "behind" child node
- draw current node
» traverse tree, starting at "in front" child node
» else if camera is behind current node
» traverse tree, starting at "in front" child node
- draw current node

» traverse tree, starting at "oehind" child node

How | Wrote the Code

Read the algorithms
from a clear source
(Wikipedia was good)

Draw a picture of a map
of walls (test data)

Build diagrams to make
sure understand
algorithm

How | Wrote the Code

* Hard code some test data
(start and end points for a list of my walls)

e *| know what the correct tree should be for this

-] Wall g_walls[5] = {
{.start_x = -10.0f, .start_y = 10.0f, .end_x = -10.0f, .end_y = -10.0f },

{.start_x = 10.0f, .start_y = -10.0f, .end_x = 0.0f, .end_y = -10.0f },

{.start_x = 0.0f, .start_y = -10.0f, .end_x = 0.0f, .end_y = 0.0f },

{.start_x = 0.0f, .start_y = 0.0f, .end_x = 10.0f, .end_y = 0.0f },

{.start_x = 10.0f, .start_y = 0.0f, .end_x = 10.0f, .end_y = 10.0f }

}oF

int g_num_walls = 5;

How | Wrote the Code

 Make up a system for determining wall facing
* | used linear algebra (could have just hard-coded it)

« Wrote a useful function using the wall, and its normal vs. a 2d point

bool is point ahead of(float x, float y, int wall index);

How | Wrote the Code

void traverse_BSP_tree(BSP_Node xcurrent_node, float cam_x, float cam_y) {
if('current_node) {
return;

}

if (!'current_node->ahead_ptr && !current_node->behind_ptr) {

* Wrote algorithm as
numbered comments
in em pty fu nCtion if (is_point_ahead_of(cam_x, cam_y, -1, current_node->wall_index)) {

traverse_BSP_tree(current_node—>behind_ptr, cam_x, cam_y);

printf("draw wall %i\n", current_node->wall_index);
return;

printf("draw wall %i\n", current_node->wall_index);

e Add code under each
comment

traverse_BSP_tree(current_node—>ahead_ptr, cam_x, cam_y);

printf("draw wall %i\n", current_node->wall_index);

traverse_BSP_tree(current_node->behind_ptr, cam_x, cam_y);

How | Wrote the Code

As | went | print out the steps:
* tree generation
* tree traversal

Compare versus known correct answer

Use debugger stepping to find points of difference

Demo [Ime

T1ps and Fun Facts

Use assert (my node) to validate pointers
(caught a couple of screw-ups)

Games that used BSP compiled the tree offline (in the map editor) and
wrote it to a flat file

You can store a tree or a linked list as a 1d array (handy for storing in files)
| do lazy/easy/ugly first - refine, simplify, delete in later passes e.g
 |solate problems and tricky bits - only one unknown at a time
e big array instead of malloc(). refine later

» stupid first - improve algorithm after learning the hard way

T1ps and Fun Facts

My source code:
hitps://github.com/capnramses/opengl_expmis/tree/master/

037_bsp

« DOOM source code (1993):
https://github.com/id-Software/DOOM

o ook for linuxdoom-1.10/r_bsp.c and R RenderBSPNode (int
bspnum)

 all done with angles rather than vectors
* USes some bit operators N ~ & for masks etc

e very similar to mine but simpler (which probably means better)

https://github.com/capnramses/opengl_expmts/tree/master/037_bsp
https://github.com/capnramses/opengl_expmts/tree/master/037_bsp
https://github.com/id-Software/DOOM

BSP demo -- Anton Gerdelan

doomlphone/doomClassicRenderer.ph

=0OFTYWARE
FROVIDED EY 34 FREE OF CHARGE = SUGGESTED RETAIL PRICE $5.00 = id SOFTWARE, [E]1952

http://fabiensanglard.net/doomIphone/doomClassicRenderer.php
http://fabiensanglard.net/doomIphone/doomClassicRenderer.php

