
Binary Space Partitioning

Anton Gerdelan <gerdela@scss.tcd.ie> 
img src: http://doom.wikia.com/

mailto:gerdela@scss.tcd.ie


Tree Construction Algorithm

• List of all walls in map 

• decide on a front side for each 

• Choose a root wall and make it a node 

• Sort all other walls into 

• In front list

• Behind list

• Recurse on both lists 

• front list's root -> left child 

• behind list's root -> right child

A B

C
D

C

D

B

behindinfront

should 
probably 
split D 

into 
D1, D2

A



Tree Traversal Algorithm
• If we want to draw walls in background-to-foreground order (the painter's algorithm) 

• We know the camera's (x,y) position 

• Traverse tree, starting at root 

• if current node is a leaf - draw current node and return 

• if camera is in-front current node 

• traverse tree, starting at "behind" child node 

• draw current node

• traverse tree, starting at "in front" child node 

• else if camera is behind current node 

• traverse tree, starting at "in front" child node 

• draw current node

• traverse tree, starting at "behind" child node



How I Wrote the Code
• Read the algorithms 

from a clear source 
(Wikipedia was good) 

• Draw a picture of a map 
of walls (test data) 

• Build diagrams to make 
sure understand 
algorithm 



How I Wrote the Code
• Hard code some test data  

(start and end points for a list of my walls) 

• *I know what the correct tree should be for this



How I Wrote the Code
• Make up a system for determining wall facing 

• I used linear algebra (could have just hard-coded it) 

• Wrote a useful function using the wall, and its normal vs. a 2d point 
 
bool is_point_ahead_of(float x, float y, int wall_index);



How I Wrote the Code

• Wrote algorithm as 
numbered comments 
in empty function 

• Add code under each 
comment



How I Wrote the Code
• As I went I print out the steps: 

• tree generation 

• tree traversal 

• Compare versus known correct answer 

• Use debugger stepping to find points of difference



Demo Time



Tips and Fun Facts
• Use assert(my_node) to validate pointers  

(caught a couple of screw-ups) 

• Games that used BSP compiled the tree offline (in the map editor) and 
wrote it to a flat file 

• You can store a tree or a linked list as a 1d array (handy for storing in files) 

• I do lazy/easy/ugly first - refine, simplify, delete in later passes e.g 

• isolate problems and tricky bits - only one unknown at a time

• big array instead of malloc(). refine later 

• stupid first - improve algorithm after learning the hard way



Tips and Fun Facts
• My source code: 

https://github.com/capnramses/opengl_expmts/tree/master/
037_bsp 

• DOOM source code (1993): 
https://github.com/id-Software/DOOM 

• look for linuxdoom-1.10/r_bsp.c and R_RenderBSPNode(int 
bspnum) 

• all done with angles rather than vectors 

• uses some bit operators ^ ~ & for masks etc 

• very similar to mine but simpler (which probably means better)

https://github.com/capnramses/opengl_expmts/tree/master/037_bsp
https://github.com/capnramses/opengl_expmts/tree/master/037_bsp
https://github.com/id-Software/DOOM




• Doom Source Code Review http://fabiensanglard.net/
doomIphone/doomClassicRenderer.php

http://fabiensanglard.net/doomIphone/doomClassicRenderer.php
http://fabiensanglard.net/doomIphone/doomClassicRenderer.php

